Artificial intelligence (AI) Interview Preparation Guide
Download PDF
Add New Question

Artificial intelligence Interview Questions and Answers will guide you that Artificial intelligence (AI) is the intelligence of machines and the branch of computer science that aims to create it. Textbooks define the field as the study and design of intelligent agents, where an intelligent agent is a system that perceives its environment and takes actions that maximize its chances of success. So learn Artificial intelligence by this Artificial intelligence Interview Questions with Answers guide

11 Artificial intelligence Questions and Answers:

1 :: What is AI?

Artificial intelligence ("AI") can mean many things to many people. Much confusion arises that the word 'intelligence' is ill-defined. The phrase is so broad that people have found it useful to divide AI into two classes: strong AI and weak AI.
Post Your Answer

2 :: What is the difference between strong AI and weak AI?

Strong AI makes the bold claim that computers can be made to think on a level (at least) equal to humans. Weak AI simply states that some "thinking-like" features can be added to computers to make them more useful tools... and this has already started to happen (witness expert systems, drive-by-wire cars and speech recognition software). What does 'think' and 'thinking-like' mean? That's a matter of much debate.
Post Your Answer

3 :: I am a programmer interested in AI. I am writing a game that needs AI. Where do I start?

It depends what the game does. If it's a two-player board game,look into the "Mini-max" search algorithm for games (see [4-1]). In most commercial games, the AI is is a combination of high-level scripts and low-level efficiently-coded, real-time, rule-based systems. Often, commercial games tend to use finite state machines for computer players. Recently, discrete Markov models have been used to simulate unpredictible human players (the buzzword compliant name being "fuzzy" finite state machines).

A recent popular game, "Black and White", used machine learning techniques for the non-human controlled characters. Basic reinforcement learning, perceptrons and decision trees were all parts of the learning system. Is this the begining of academic AI in video games?
Post Your Answer

4 :: What is an agent?

A very misused term. Today, an agent seems to mean a stand-alone piece of AI-ish software that scours across the internet doing something "intelligent." Russell and Norvig define it as "anything that can can be viewed a perceiving its environment through sensors and acting upon that environment through effectors." Several papers I've read treat it as 'any program that operates on behalf of a human,' similar to its use in the phrase 'travel agent'. Marvin Minsky has yet another definition in the book "Society of Mind." Minsky's hypothesis is that a large number of seemingly-mindless agents can work together in a society to create an intelligent society of mind. Minsky theorizes that not only will this be the basis of computer intelligence, but it is also an explaination of how human intelligence works. Andrew Moore at Carnegie Mellon University once remarked that "The only proper use of the word 'agent' is when preceded by the words 'travel', 'secret', or 'double'."
Post Your Answer

5 :: What has AI accomplished?

Quite a bit, actually. In 'Computing machinery and intelligence.', Alan Turing, one of the founders of computer science, made the claim that by the year 2000, computers would be able to pass the Turing test at a reasonably sophisticated level, in particular, that the average interrogator would not be able to identify the computer correctly more than 70 per cent of the time after a five minute conversation. AI hasn't quite lived upto Turing's claims, but quite a bit of progress has been made, including:

- Deployed speech dialog systems by firms like IBM, Dragon and Lernout&Hauspie

- Financial software, which is used by banks to scan credit card transactions for unusual patterns that might signal fraud. One piece of software is estimated to save banks $500 million annually.

- Applications of expert systems/case-based reasoning: a computerized Leukemia diagnosis system did a better job checking for blood disorders than human experts.

- Machine translation for Environment Canada: software developed in the 1970s translated natural language weather forcasts between English and French. Purportedly stil in use.
Post Your Answer
Add New Question